Inference in Infinite Superpositions of Non-Gaussian Ornstein–Uhlenbeck Processes Using Bayesian Nonparametic Methods

نویسنده

  • J. E. GRIFFIN
چکیده

This paper describes a Bayesian nonparametric approach to volatility estimation. Volatility is assumed to follow a superposition of an infinite number of Ornstein–Uhlenbeck processes driven by a compound Poisson process with a parametric or nonparametric jump size distribution. This model allows a wide range of possible dependencies and marginal distributions for volatility. The properties of the model and prior specification are discussed, and a Markov chain Monte Carlo algorithm for inference is described. The model is fitted to daily returns of four indices: the Standard and Poors 500, the NASDAQ 100, the FTSE 100, and the Nikkei 225. (JEL: C11, C14, C22)

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Bayesian inference with stochastic volatility models using continuous superpositions of non-Gaussian Ornstein-Uhlenbeck processes

This paper discusses Bayesian inference for stochastic volatility models based on continuous superpositions of Ornstein-Uhlenbeck processes. These processes represent an alternative to the previously considered discrete superpositions. An interesting class of continuous superpositions is defined by a Gamma mixing distribution which can define long memory processes. We develop efficient Markov c...

متن کامل

Intermittency of Superpositions of Ornstein-Uhlenbeck Type Processes

The phenomenon of intermittency has been widely discussed in physics literature. This paper provides a model of intermittency based on Lévy driven Ornstein-Uhlenbeck (OU) type processes. Discrete superpositions of these processes can be constructed to incorporate non-Gaussian marginal distributions and long or short range dependence. While the partial sums of finite superpositions of OU type pr...

متن کامل

Inference With Non-Gaussian Ornstein-Uhlenbeck Processes for Stochastic Volatility∗

Continuous-time stochastic volatility models are becoming an increasingly popular way to describe moderate and high-frequency financial data. Recently, Barndorff-Nielsen and Shephard (2001a) proposed a class of models where the volatility behaves according to an Ornstein-Uhlenbeck process, driven by a positive Lévy process without Gaussian component. These models introduce discontinuities, or j...

متن کامل

Limit Theorems for Multifractal Products of Geometric Stationary Processes

Abstract: We investigate the properties of multifractal products of geometric Gaussian processes with possible long-range dependence and geometric Ornstein-Uhlenbeck processes driven by Lévy motion and their finite and infinite superpositions. We present the general conditions for the Lq convergence of cumulative processes to the limiting processes and investigate their q-th order moments and R...

متن کامل

ar X iv : m at h / 06 04 08 6 v 2 [ m at h . ST ] 6 A pr 2 00 6 Laws and Likelihoods for Ornstein Uhlenbeck - Gamma and other BNS

In recent years there have been many proposals as flexible alternatives to Gaussian based continuous time stochastic volatility models. A great deal of these models employ positive Lévy processes. Among these are the attractive non-Gaussian positive Ornstein-Uhlenbeck (OU) processes proposed by Barndorff-Nielsen and Shephard (BNS) in a series of papers. One current problem of these approaches i...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010